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TABLE 9. Litter and Soil Carbon Pools

Nonwoody? Woody Upper soil?

Mean, Total, Mean, Total, Mean, Total,

Class gCm? PgC gCm?2 PgC gCm? PgC
1 1246 21.7 1216 21.2 5291 91.9
2 1196 2.6 1135 235 5465 11.8
3 1345 53 1290 5.1 5933 234
4 1203 18.0 1158 17.3 5645 839
3 1195 7.5 1211 7.6 5635 353
6 869 15.5 853 15.2 3742 66.5
7 323 32 0 00 1895  18.8
8 1018 23 954 2.1 3915 8.7
9 274 27 260 2.5 1468 139
10 787 5.0 758 4.7 3447 218
11 74 1. 146 2.2 718 105
12 333 88 0 00 2335 589
Total 93.7 80.4 445.4

aIncludes leaves and fine roots.

bIn top 0.3 m of profile.
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Fig. 8. Latitude-based litter and soil carbon pool totals (Pg C).

Sampling Network during 1986 [Conway and Tans,
1989]. Although the atmospheric CO; concentration
is an integrated response o terrestrial and oceanic
processes, combined with the effects of
anthropogenic fossil fuel and land use sources,
terrestrial carbon fluxes dominate the seasonal signal
[Fung et al., 1987]. Monthly changes in CO,
concentrations (dCQO,) are roughly mirror images of
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zonally averaged NEP (Figures 9a-9¢). We used
CO, measurements from Point Barrow, Alaska
(BRW) at 71° N, Mauna Loa, Hawaii (MLO) at 200
N, and Christmas Island (CHR) at 2° N for
comparisons to monthly NEP averaged over 50°-80°
N, 100-30° N, and 0°-10° N respectively. The
latitude zones for BRW and MLO were the same as
those used by Tucker et al. [1986] for a similar
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TABLE 10. Turnover Times for Carbon in Four
Litter/Soil Pools Shown in Figure 5

Carbon Pool Turnover Time, yr

Class ML SM SLOW OLD
1 0.2 0.6 9 264
2 0.9 1.6 28 815
3 1.1 1.7 32 936
4 1.3 2.1 40 1177
5 1.9 33 64 1873
6 0.3 0.8 13 393
7 0.6 1.2 23 679
8 0.4 0.9 16 483
9 0.5 1.1 21 611

10 1.9 4.2 84 2466

11 0.7 2.0 39 1162

12 0.7 1.1 15 457

Metabolic Litter (ML), Soil Microbes (SM),
SLOW, and OLD organic matler.

analysis. For all three station locations, positive
dCO; values were associated with transitions Lo
consistently negative NEP, which indicates net
carbon losses from terrestrial ecosystems through
microbial respiration. Negative dCO; values were
accompanied by increases in NEP to comparatively
high and consistently positive values that would
indicate net ecosystem carbon gains through
photosynthetic fixation.

Simple linear regression of the paired monthly
dCO; concentrations versus NEP estimates resulted
in negative slopes and r2 values of 0.67, 0.09, and
0.24 for BRW, MLO, and CHR, respectively. If a
one month lag was assumed (to account for
atmospheric mixing), so that NEP for month 7 is
plotted against dCO; for month r+1, the coefticients
become 0.19 for BRW, 0.52 for MLO, and 0.17 for
CHR. Atmospheric circulation and boundary-level
mixing effect may cause a delay of about a month in
equilibrium CO; concentrations at MLO, which is
thought to be characteristic of globally averaged CO»
cycle [Tucker et al., 1986].

Model Result Comparisons of Production

The terrestrial production estimate from the
CASA-Biosphere model of 48 Pg C yr-! is within
several Pg C of previously published estimates. For
example, the TEM estimate is 53.2 Pg C yr-! [Melillo
et al., 1993]. Although we use the some of the same
calibration sites as those used in TEM for our NPP
estimates, the modeling approaches are sulliciently
different that continental estimates are only loosely
constrained. On a continental basis, our model
estimates production for North and South America at
6.1 and 14.4 Pg C yr!, respectively, compared to
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TEM predictions of 7.0 [McGuire et al., 1992] and
12.5 Pg C yr! [Raich et al., 1991]. The average
CASA-Biosphere model estimate for NPP (g m2
yr-1) in tropical evergreen forests is about 6% higher
than the corresponding TEM prediction, which may
explain the difference in total production for the
South American continent. Differences in area
estimates for the various vegetation types, however,
confound this analysis.

We compared grid cell estimates of NPP from the
CASA-Biosphere and MIAMI [Lieth, 1975] models.
Figure 10 shows these estimates aggregated for
vegetation types. The MIAMI model estimates
global terrestrial NPP at around 61 Pg C, which is
about 20% higher than the CASA model prediction.
The lower CASA NPP estimates for many biomes
may be duc in part to the sensitivity of our model to
IPAR. Even though the mean climate - NPP
regressions developed in the MIAMI model may
suggest a potential NPP for a grid cell, there can be
areas within the cell where plants do not persist
(e.g., surface area covered by rock, lakes or asphalt)
or times of the year when human management has
altered the land cover. These bare areas will lower
the average TPAR for the grid cell and thus reduce the
average NPP calculated in CASA for the biome type
on a per square meter basis. For example, the CASA
predicted NPP for class 11 (bare soil and deserts) is
less than one third of the MIAMI model estimate.

Implications for Litter and Soil C Storage

The CASA-Biosphere model predicts that
undecomposed litter plus carbon pools in the upper
(0.3 m) soil contain about 620 Pg C, slightly more
than one-third of Schlesinger's [1991] global
estimate of 1500 Pg C which considers soil pools to
1.0 m depth. Our prediction of nonwoody surface
litter (51 Pg C) is close to Schlesinger's [1977]
cstimate of 55 Pg C. The CASA prediction for
standing litter pools in the tropics is somewhat higher
than expected, compared to those for temperate
forests (Table 9). One reason for this pattern is that
overall litter decomposition rates can be
underestimated using the fractionation algorithm
shown in equation (16) [Parton et al., 1993],
especially if the litter lignin-to-nitrogen ratio is high.

Model results (not shown here) indicate that C-to-
N ratios of litter entering the soil system consistently
tend toward minimum levels for all vegetation
classes, except in extreme high-latitude areas. Under
the present model structure, N mineralization rates
are adequate to meet the maximum demands of
vegetation. This pattern may result from sensitivity
to the initial state of soil N pools, which follow from
a spatially uniform fraction of Post et al.'s [1985]
storage estimates. The overall availability of nitrogen
to plant, litter, microbe and soil pools is fixed to
these initial levels. Further tests involving soil N
initialization levels and feedbacks on decomposition
rates arc underway 1o better understand ecosystem
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Fig. 9. Comparisons of atmospheric dCO; concentrations (solid lines) and NEP (dashed lines) for (a) Point
Barrow, Alaska (BRW), (b) Mauna Loa, Hawaii (MLO), and (c¢) Christmas Island (CHR).
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Fig. 10. Comparison of model NPP model predictions by vegetation classes from Dorman and Sellers [1989].
Shaded bars are MIAMI model [Lieth, 1975] predictions; hatched bars are CASA model (this study) predictions.

model sensitivity to nitrogen sources and sinks.

Comparison of our steady state estimates of soil
carbon pools to initial model conditions, the latter of
which matches the geographic distribution for life
zones as reported by Post et al. [1985], indicates that
the simulation predicts somewhat lower soil carbon
storage at high latitudes to mid latitudes (90°-30° N)
and higher pools in tropical (20° N-20°¢ S) Jatitudes.
Part of the diffcrence may be due to the fact that we
model only the upper 0.3 m of the soil, while Post et
al. [1985] consider C storage to | m soil depth.
However, if we compare the average CASA model
estimate of carbon stored in upper soil layers of
moist tropical forests (5.3 kg m-2 to 0.3 m depth) to
Detwiler's [1986] estimate of 6.5 kg m2to 0.4 m
depth, there is closer correspondence between
observed and predicted. It should be noted,
however, that the distribution of C storage in upper
soil layers does not necessarily reflect soil carbon
pools below 0.3 m depth. Previous comparisons
suggest that the greatest difference between tropical
and temperate soils is found in deep profile layers
[Sanchez et al., 1982]. Our focus on the top 0.3 m
soil is attributed to poor understanding of organic
maller dynamics in deeper soils.

Another explanation for the prediction of relatively
large soil C pools in the tropics is that 66% of all fine
textured soils in the FAO-SMW are located between
30° N and 300 S [Zobler, 1986]; as pointed out by
Parton et al. [1989b], the model structure used in
CASA reduces the fraction of carbon lost as CO,
during transfer to the SLOW pool in tropical soils
with high silt-clay contents as per equation (18). In
addition, CASA overlooks the effect of seasonal fires
on reduction of soil organic matter accumulation,
which may be particularly important in dry tropical
areas.

The fraction of total soil carbon made up by the
SLOW soil pool, which we estimatc (o have a
residence time of 10-85 yr in most upper soil layers
(Table 10), has important implications [or studies of
the global carbon cycle. We estimate that this
fraction makes up around 65% of carbon in soil
upper layers at latitudes higher than 30° N, but is as
high as 83% in tropical zones. The model predicts a
global SLOW pool of 300 Pg C in the surface (0.3
m) soil layers, which represents less than one third
of estimated global litter and soil C storage
[Houghton et al., 1990; Schlesinger, 1991].
Independent estimates using soil radiocarbon
measurcments of SLOW C pool size and turnover
time by Harrison et al. [1993] suggested values
somewhal higher than our own (75% of the total
with turnover time of 25 yr, for a SLOW pool total
of about 500 Pg C). Results from the CASA-
Biosphere model suggest that, under a climate
warming scenario, higher turnover times of relatively
large SLOW carbon pools in tropical ecosystems
may lead to substantial increascs in CO; fluxes from
microbial respiration, as predicted by a simpler
model [Townsend et al_, 1992].

Advantages and Limitations of the Model

The CASA experience shows thal remote sensing
and GIS technologies, when used in conjunction
with large scale land data bases, can help bridge the
gap in scales that cxists between global biosphere
modecls and the very local data used to calibrate them.
Nevertheless, the NPP calibration process used in
CASA has scaling limitations of both a temporal and
spatial nature. Predictions are based on mean
monthly climate data from the period 1930-1960 and
remote sensing obscrvations collected from a single
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year (1987). In the calibration process, predicted
NPP is compared with observations that have been
gathered al various intcrvals over the past 30 years.
The temporal discontinuity between climate, satellite
and NPP site observations introduces uncertainty
into CASA model estimates. Such discontinuities
may be reduced in part as more satellite data become
available for use in multi-year global biosphere
studies. Uncertainty is also introduced into the
model as a result of the difference in spatial
resolution between climate/satellite data sets (~100
km) and NPP site data (with plot sizes ranging from
meters to hundreds of meters). The main difficulty is
that calibration sites cannot represent the
heterogeneity within 10 grid cells. Features such as
lakes, bare soil, and asphalt act to reduce satellite
derived vegetation indices. We expect that, in
general, per area regional estimates of NPP to be
somewhat less than the values observed at small
study sites, but the magnitude of this effect is
difficult to determine without studies based on finer
scale data.

Another set of limitations involves the use of a
singlc layer soil submodel for moisture controls.
First, element leaching to layers below the rooting
zone was not considered in this study. Second,
while the soil submodel inlegrates moisture
availability over the top 1-2 m of soil, the scalar used
to calculate carbon turnover and nitrogen
mincralization fluxes applies only to the upper 0.3 m
of the soil profile. Third, a single layer soil model
fails to adequately account for the high efficiency
with which a dry upper layer prevents evaporative
loss from wetter lower layers [Hillel, 1980].

The confidence one places in model predictions
depends (o a large degree on reliability of input data
sets. Modeling at the global scale currently
neeessitates use of data inputs that have not been
extensively verified. This is particularly true for land
usc and soil data sets, where the problems involve
both the density of measured sites and the
consequences of aggregation to a few classes.

Models based on remole sensing data have
relatively strong potential to analyze temporal
changes during the era of satellite data, but their
applicability to other times, climates, and biome
distributions is less clear. Without additional
algorithms for simulating changes in NDVT under
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altered conditions, the CASA-Biosphere mode] has
limited use for climate- or vegetation-change
scenarios. Extensions and improvements in the
satellite record will enhance its usefulness for
detecting and quantifying global change.

CONCLUDING REMARKS

The CASA-Biosphere model links ecological
regularity (e.g., the IPAR:NPP relationship) and
process-level descriptions (e.g., effects of
temperature and water on NPP and soil C and N
transformations) with satellite and surface data at the
global scale. The result has some limitations, but
also some unique advantages. The use of an
AVHRR-based vegetation index gives the model rich
access to intra-annual and interannual variability,
including some aspects of agriculture and land use
change. Because the model emphasizes scaling at the
process rather than the biome level, the results are
only sparingly sensitive to the quality and quantity of
data characterizing any single ecosystem type. This
approach also tends to minimize impacts of structural
and taxonomic variation within regions classified as a
single biome.

Modeled global NPP is comparable to estimates
from other recent models, and the seasonal pattern of
modeled global NEP is consistent with the intra-
annual dynamics ol atmospheric CO;. Improved
validation will depend on finer scale remote sensing
data and on new experimental data, concerning both
ecosystem processes and the spatial and temporal
distribution of atmospheric CO,.

While the CASA approach is not ideally suited for
studies of land use, atmospheric, and climate change,
its can contribute to efforts along those lines. The
generation of models that successfully simulates
response(s) of the terrestrial biosphere (o changes in
land use, atmospheric CO,, and climate will be likely
to include components from diverse approaches.

APPENDIX

Major pool variables and scalars are described in this
appendix. Variable definition sources include data
input drivers (D), spatially uniform settings (U), and
model calculations (M).

TABLE Al. Definitions for Major Pool Variables and Scalars

Name Description Source Value Units
Soil Moisture Submodel

EET Estimated evapotranspiration M m mo!

PACK Snow pack pool M m

PET Potential evapotranspiration M m mo-!
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TABLE Al. (continued)

Name Description Source Value Units
PPT Precipitation D m mo-!
RDR Relative drying rate scalar M 0-1 unitless
SOILM Soil moisture storage pool M m

T Air lemperature D oG

NPP and Litterfall Submodel

€ Light utilization efficiency M g CMJTPAR
IPAR Intercepted PAR M Ml
LT A Monthly litterfall fraction M 01 unitless
NPP Net primary productivity M g C m2 mo-!
PAR Photosynthetically active radiation M MJ mo-!
SOL Solar radiation D MJ mo!
Topt Temperature optimum for NPP M °C
Ter Temperature stress factor M 0-1 unitless
Ter Temperature stress factor M 0-1 unitless
W, Water stress factor M 0-] unitless
Soil C/N Submodel
ETX Soil texture effect scalar M 0-1 unitless
LFA. Leaf carbon allocation fraction U 0.33 unitless
LF) Leaf lignin fraction M 0-1 unitless
LM, Surface litter microbial C pool M g Cm?2
LM, Surface litter microbial C-to-N ratio U 10 unitless
LMy Surface litter turnover rate U 0.455 mo-!
LM, Surface litter microbial N pool M g N m2
M, Microbial C assimilation efficicncy 8) 0.45 unitless
MIN,, Mineral nitrogen pool M g N m?2
ML, Metabolic leaf litter carbon pool M gCm?2
ML, Metabolic leaf litter C-to-N ratio U 25 unitless
MLy Metabolic leaf litter turnover rate U 0.703 mo-!
ML, Metabolic leaf litter nitrogen pool M g Nm?
MR, Metabolic root litter carbon pool M gCm?
MR, Metabolic root litler M-to-N ratio U 25 unitless
MRy Metabolic root litter turnover rate U 0.781 mo-!
MR, Metabolic root litter nitrogen pool M g Nm-?
OLD, Old soil carbon pool M gCm?2
OLDy Old soil carbon turnover rate U 0.00056  mo!
OLD, Old soil nitrogen pool M g N m2
Qo Q1 constant u 2.0 unitless
RTA, Root carbon allocation fraction U 0.33 unitless
RT), Rootl lignin fraction M 0-1 unitless
SL. Structural leaf litter carbon pool M g Cm?
SLen Structural leaf/root C-to-N ratio M 150 unitless
SL, Structural leaf litter nitrogen pool M g N m2
SLOW, Slow soil carbon pool M g Cm?
SLOW, Slow soil carbon turnover rate U 0.0163 mo-!
SLOW, Slow soil nitrogen pool M g Nm2
SM, Soil microbial carbon pool M g Cm2
SM¢, Soil microbial C-to-N ratio U 10 unitless
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TABLE Al. (continued)

Name Description Source Value Units
SM,, Soil microbial nitrogen pool M g Nm?
SRT. Structural root litter carbon pool M g Cm?
SRT, Structural root litter nitrogen pool M gNm?
Ty Soil temperature effect scalar M 0-2.8 unitless
WDA, Woody carbon allocation fraction U 0.33 unitless
WD, Woody detritus carbon pool M g Cm?2
WD, Woody detritus C-to-N ratio U 260 unitless
WDy Woody detritus carbon turnover rate U 0.04 mo-!
WDy Woody detritus lignocellulose fraction M 0.35 unitless
WD, Woody detritus nitrogen pool M g Nm?
W Soil water effect scalar M 0-1 unitless
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